A. Pejcev - vezbe i predavanja (priprema za Prvi kolokvijum)

Post Reply
apejcev
Posts: 1965
Joined: 25.06.2014. 00:25

A. Pejcev - vezbe i predavanja (priprema za Prvi kolokvijum)

Post by apejcev »

Iz date Zbirke zadataka na nastavi su radjeni zadaci 6.1.4. (strana 154), 6.1.6., 6.1.7., 6.1.8. (bez Aitkenove sheme, jer nije predavana). U cilju sto bolje pripreme za Prvi kolokvijum, studentima se preporucuje da iz interpolacije pogledaju jos zadatke 6.1.16., 6.1.22., 6.1.23. (deo sa Hornerovom shemom nije neophodan), 6.1.24. i da se informisu (ne mora previse detaljno) o prostiranju slucajnih gresaka kroz tablicu podeljenih razlika (zadatak 6.1.27., mada je ovaj problem razmotren i u udzbenicima profesora Spalevica i profesora Cvetkovica). Takodje, vezano za numericko diferenciranje, studentima se savetuje da prouce zadatke 7.1.1. (str. 259 - samo treba znati kako glase 4 navedene formule i kolika im je preciznost - preskociti bilo kakva dokazivanja), 7.1.3. (deo o operatorima na str. 264 i 265 preskociti), da zadatke 7.1.4. i 7.1.5. probaju da rese bez operatora (na nacin na koji je prvobitno resen zadatak 7.1.3. - mogu da uporede dobijeni rezultat) i 7.1.8.

Aleksandar Pejcev
Attachments
Spalevic-Numericka_Matematika_Zbirka.pdf
(1.94 MiB) Downloaded 509 times
apejcev
Posts: 1965
Joined: 25.06.2014. 00:25

Re: A. Pejcev - vezbe i predavanja (priprema za Prvi kolokvi

Post by apejcev »

Izuzimajuci detaljno dokazivanje teorema, iz knjige Numericke metode profesora Cvetkovica i profesora Spalevica takodje procitati deo od 143. do 158. stranice, obratiti posebnu paznju na resene racunske primere (recimo str. 154-155 zadaci tog tipa mogu biti na kolokvijumu), dok ce odgovarajuci kodovi u Matlab-u sluziti za Drugu radnu. vezbu. Vezano za numericko diferenciranje, iz iste knjige prouciti (bez udubljivanja u zapis preko operatora) resen racunski primer na str. 217 (eventualno str. 223).

A. Pejcev
apejcev
Posts: 1965
Joined: 25.06.2014. 00:25

Re: A. Pejcev - vezbe i predavanja (priprema za Prvi kolokvi

Post by apejcev »

Dati primer ilustruje primenu Runge-ove formule za ocenu greske.
Numintegracija.pdf
(74.32 KiB) Downloaded 328 times
Vezano za oblast Numericke integracije, iz zbirke se preporucuju zadaci 7.2.1. (str. 274), 7.2.2. (svi integrali potrebni za deo a) se najlakse racunaju uz pomoc smene x=cos(t), dok su svi integrali potrebni za deo b) standardni primeri za parcijalnu integraciju), 7.2.8. (ne zbunjivati se oko onoga "erf", to nije bitno za zadatak), 7.2.9.

A. Pejcev
Post Reply